Failure & Lessons Learned in Informarion Technology Managemen:
Vol. 2, pp. 83-90, 1998
Printed in the USA. Al dghts reserved,

Halstead’s Metrics Revisited for

1038-128X/98 $10.00 +.00
Copyright © 1998 Cognizant Comm. Corp.

nowledge-Based Systemns

H. R. MORENQO AND R. T. PLANT

Department of Computer Information Systems, University of Miarni, Coral Gables, FL 33124

As organizations become meore virtual in nature and utilize knowledge-based technolegies to support this mode of
operation, the requirement to create robust industrial-strength systems becomes vital. The project managers and
systems developers require tools and metrics to ensure effective planning and monitering of the systems develop-
tment, The article focuses upon Halstead’s software science effort metric. The article shows the weakness and inappli-
cability of this method when applied to knowledge-based systems development and indicates the potential hazards

associated with the incorrect selection of metrics.

Software metrics; Knowledge-based systems; Software estimation.

INTRODUCTION

The organization of the 21st century is destined to be
significantly different from that of the 20th century. The
primary cause is the peed to be flexible, agile, and
adaptable in a marketplace that demands mass customi-
zation of products. This move to a virtual organization
(Davidow & Malone, 1992), in which the organization
is flexible both internally through its ability to reconfig-
ure its processes and externally through its connectivity
with customers, suppliers, outsourcers, etc., is based
upon network technelogies. The intranets that connect
the iriternal processes and the internets that link the or-
ganization to the external value system are key to this
new organizational structure. However, the telecommu-
nications component is just one aspect of the virtual or-
ganization. It is the ability of that organization to pro-
cess information and have its systems autonomously
behave in a knowledgeable manner upon that informa-
tion that provides the competitive advantage and virtual-
ization to those organizations. The autonomous intelli-
gence is facilitated by the use of artificial intelligence in
the form of agents, facilitators, and knowledge query
and manipulation languages. As stated by O’Leary,
Kukka, and Plant (1997), “virtual organizations may be
the first large-scale industrial application of artificial in-
telligence.” A strong component of this is the use of
industrial-strength knowledge-based systems (KBSs),
which perform a variety of tasks in the Intelligent Enter-
prise (Quinn, 1992). KBSs work in areas such as mar-
keting, acting as interpretive agents of corporate data
mining, call center management in which the operator
interacts with a KBS to advise customers (Qunin, 1992),
and finance where KBSs are used for capital investment

_ Comespondence and requests for reprints should be addressed wo R. T.

Plant. Tel: (305) 284-1963; Fax: (305) 284-5161; E-mail: rplant@
exchange.sba.miami.edu.

83

appraisal (King & McAulay, 1995). The KBS compo-
nent of Al is perhaps the most mature aspect of Al and
as such the most frequent to be integrated into a systems
development or embedded into other systems.

The movement, and hence increased operational de-
pendence of organizations on KBSs, requires the organi-
zation understand the technology in a context other than
that of customized research-based systems. This requires
an understanding of the interaction of the technology
with the culture, structure, process, and innovation of
the organization as well as the implementation of indns-
trial-strength KBS from a project management perspec-
tive.

A critical aspect of all project management and soft-
ware development is the ability to understand the rela-

' tionship between design and factors, such as: rehability,

quality, complexity, maintainability, and structure. In or-
der to understand these relationships it is necessary for
the developer to appraise many interrelated parameters,
such as the way a software language is used, modularity
within design, and the complexity of a design. To study
these aspects of development a branch of software engi-
neering has developed, termed Software Metrics, in
which the theory of measurement is applied to software
systems. The use of metrics in the development and
management of traditional systems is well documented
(Adamov & Baumann, 1987; Fenton, 1991; Zuse, 1991).
However, even though there is a growing literature on
the management of systems development through met-
rics (Garmus & Herron, 1996; Grady, 1992; Grady &
Caswell, 1987) and of knowledge-based systems devel-
opment and project management (DeSalvo & Liebowitz,
1990; Liehowitz, 1991; Turban & Licbowtiz, 1992), the
literature relating to metedcs and KBSs is sparse, primar-
ily relating 1o issues in their validation and verification
(SAIC, 1995). The aim of this article is to perform an
introductory investigation into the issues surrounding
the construction and application of metrics to KBSs. The

84

article is organized as follows: the second section gives
an overview of three types of software metrics, struc-
tural, data, and token based, that can be used to identify
the properties of systems. The third section focuses upon
one of these metrics, Halstead’s token-based metric for
measuring the development effort required by a software
system in its construction. An experiment is performed
to examine the applicability of this metric in order to
determine the effort required in the creation of a2 KBS
and what variances occurred as the tokens used in the
metric were changed in the measurement process, The
fourth section reflects upon the success of this experi-
ment and the use of metrics to determine development
effort for KBSs. Finally, the article discosses the future
use of metrics in relation to KBS development.

METREICS OVERVIEW

The area today known as Software Metrics has its ori-
gins in the mid-1970s when two highly influential works

were published: McCabe's (1976) “A Complexity Mea--

sure” and Halstead’s (1975) Elements of Software Sci-
ence. Since then there has been continuing research in
the area of metrics (for a full reference see Conte, Dun-
smore, & Shen, 1936, Fenton, 1991) that primarily falls
into three categories: logic structure metrics, data struc-
ture metrics, and token measurement metrics.

Structural Metrics -

The logic structure metrics are concerned with identi-
fying and counting the decisions and branching factors
of a program (Zuse, 1981). The flow of control within
a program is examined and the occurrence of forward,
backward, or horizontal branches is analyzed, taking
into account whether they are compound conditions or
how deeply nested are the predicates. An example of
this type of metric is that of McCabe’s Cyclomatic Com-
plexity Number [V(G)] (McCabe, 1976), the value of
which is determined by the equation:

WGy =e—n+p

where ¢ and n are the number of edges and nodes in a
flowgraph and p is the number of connected compo-
nents.

The cyclomatic complexity metric in conjunction
with other logic structure metrics, such as Zolnowski’s
depth of nesting metric (Zolnowski & Simmons, 1981)
and the Schneidewind-Hoffmann reachability metric
{Schneidewind & Hoffman, 1979), aim to allow soft-
ware engineers to reason about the complexity of a pro-
erams flow of control, such that the lower the complex-
ity the easier a system is to maintain, test, and reason
OVEer.

MOREMNG AND PLANT

Data Structure Metrics

The second set of metrics is the data structure met-
rics. These are metrics associated with measuring infor-
mation flow characteristics. They can be at the program
level, intramodale level, or variable level. A series of
metrics that attempts to measure information flow be-
tween modules has been proposed by Henry and Kafura
{1981) (subsequently medified by Sheppard, 1990). The
Henry-Kafura information flow complexity meiric:

program-length * (fan-in * fan-out)’

utilizes measurements of fan-in and fan-out, which Fen-
ton defines as the “fan-in of a module M is the number
of local flows that terminate at M, plus the number of
data structures from which information is retrieved by
M and the “fan-out of a module M is the number of
local flows that emanate from M, plus the number of
data structures that are updated by M” (Fenton, 1991).
Further to these information flow metrics, the software
engineer can utilize measures such as coupling or cohe-
sion, where coupling can be defined as “a measure of
the degree of interdependence between modules” (Press-
man, 1987) and determined through Fenton’s coupling
metric (Fenton, 1991), which is defined as:

c(x,y) = i+(nm+1)

where the coupling ¢ between modules x and y is related
to n, the number of interconnections between those mod-
ules, and the coupling type, i, being a numeric value for
the worst case coupling between x and y. The coupling
types being on a scale from contents (5), common (4),
conirol (3}, stamp (2), data (1), no coupling (0). Cohe-
sion is similarly defined by Fenton: “‘Cohesion is an at-
tribute of individual modules, describing their relative
functional strength i.e., the extent to which the individ-
ual module components are needed to perform the same
task™ or in numeric terms as:

Cohesion Ratio = number of modules having
functional cohesion/total number of modules.

The data structure metrics are important to the software
engineer as they can be examined early in the life cycle
and development of a system, acting as cost-saving mea-
sures. They also function as tests that ensure the system
is being developed in accordance to a given methodol-
ogy (i.e., a balance between low coupling and high co-
hesion), and poor metric results would indicate wealk-
ness in the development techniques being used.

Token-Based Metrics

The third set of metrics is those based upon measure-
maent of tokens in a system, program, or module. This

HALSTEAT’S METRICS REVISITED FOR KNOWLEDGE-BASED SYSTEMS 85

approach to measurement was initiated through Hal-
stead’s Software Science, where he proposed a series of
metrics based upon the measurement of operands and
operators in an algorithm. The basic metrics are defined
as:

71 = number of unique operators

7, = number of unique operands

N, =total usage of all operators

N, = total usage of all operands

from which Halstead defined the vocabulary r as:

n=p+H;
the implementation length & as:

N=N 1+ N, 2
and the volume V as:

V=N *log,(n).
Halstead developed a whole series of more complex
metrics based upon these basic token measures that mea-
sure such characteristics as Effort, Program Level, and
Level of Program Abstraction.
The work of Halstead and the Software Science

movement has not been without its controversy and crit-
jcism (Hamer & Frewin, 1982; Shen, Conte et al., 1986).

. However, the majority of this has been aimed at those

metrics that are based }ess on direct token measurements
and more on those metrics that draw from a theory of

‘psychological measurement. An example of such a met-

ric is the Intelligent Content metric 1, where:
I=1r*V

L being the estimated level of abstraction of the impile-
mented algorithm:

h= 2/”1 * nleg'.

The use of psychological techniques such as the Stroud-
Number (Stroud, 1967) led to significant criticism and
the metrics relating to development time estimation and
the prediction of bug-rates can largely be disregarded.
However, this should not distract from the value of the
basic Software Science, token-based meirics, which are
still valuable to the software engineer in estimating rela-
tive development effort. The Effort metric:

E=ViIL™

can be used to provide a base for predicting the develop-
ment effort of projects based upon experience and simi-
Jar existing projects in similar development environ-
ments.

HALSTEAD'S EFFORT METRIC FOR ERS
Intreduction

The previous section outlined three general categories
of metrics that can be applied to software systems to
extract a desired understanding of that systems proper-
ties. The categorization is obviously not compleie, and
full reference material is available on this subject {Ada-
mov & Baumann, 1987; Fenton, 1991). A set of metrics
within this field has been proposed and used to better
determine the cost and effort required to build a software
system. These include Function Points (Albrecht & Gaf-
fney, 1983) and COCOMO, which is based upon the
estimation of source lines of code in a program (Boeghm,
1981). Metrics have also been used to help determine
maintenance efforts (Harrison, Magel, Kluczny, & De-
Kock, 1982; Kafura & Reddy, 1987). However, as stated
earlier, very little work has been performed on the de-
velopment of metrics for assessing the development ef-
forts required for KBSs. In the remainder of this article
we will consider Halstead’s token-based Effort metric in
relation to KBSs. The article will examine the metric in
detail and through experimentation examine what are the
critical factors affecting this measure. We also consider
what are the key influences of those factors, such that
the software development/maintenance effort can be re-
duced.

Experimental Background

The atm of the experiment was to take Halstead’s
Effort metric and apply it to KBSs. In doing so two
issues were to be examined: first, by manipulation of the
parameters that comprise the Effort metric, establish an
initial understanding of KBS design optimization (e.g.,
in KBS design does the number of operands or operators
have the most significant effect upon the Effort required
to develop the system) and second, to understand if the
meiric was of real industrial-strength use to establishing
effort requirements for KBS development. These two is-
sues will establish the utility of such a metric for knowl-
edge engineers in the field.

Experimental Details

Halstead defined his Software Science to be based
upon the measurable properties of algorithms and as
such KBSs can be clearly measured in this way.

Knowledge-Based Systems

In this article we are using the term KBS to be a
traditional production system. Such a system is config-
ured in three parts: a rule base, which acts as the knowl-
edge representation; an inference engine, which manipu-
lates the rules; and a working memory, which acts as a.
store for intermediate results piior to determining the
solution. We will now examine these in more detail.

86

Rule Base. A tule base consists of a series of produc-
tion rules that are composed of a proposition and a con-
sequence:

Rulel: TF Condition_1 THEN Action_1
Ruje2: IF Condition_2 THEN Action_2
Rule3: TF Condition_3 THEN Action_3

Inference Engine. The rules of the knowledge base
are manipulated by an inference engine, which acts in a
three part cycle: Match, Select, Fire.

" The inference engine first Matches the initial user in-
put with the Condition sides of the rules, generally
known as the LHS of the rule. Wher a match is found
then the inference engine notes the match and progresses
through all the rules until all matches are noted. The
inference engine then performs the second part of the
cycle, the Selection of the most appropriate rule. This is
easy if there is only one match; however, this is rarely
the case and thus a technique known as Conflict Resolu-
tion is utilized. There are many Conflict Resolution
strategies, for example: select the first rule encountered,
the 1ast rule, the shortest, the rule with the most number

of subconditions in the LHS, etc. Once a rule has been -

selected the inference engine then Fires the rule, in that
the contents of the right-hand side of the rule are added
to the Working Memory Environment (WME), the third
major component of the KBS.

Working Memory Environment. The WME is the
temporary storage area for the inference engine. Having
performed the first Match, Select, Fire cycle the infer-
ence engine in subsequent cycles takes the contents of
the WME and compares itto the LHS of the rules, act-
ing upon this improved information input set. This con-
tinues until all possible rules have been fired for the
given input WME and intermediate WMESs, at which
time a result is produced and the cycle terminates.

Forward and Backward Chaining. The basic Match,
Select, Fire cycle can occur in two ways: forward chain-
ing and backward chaining through the rule set. Forward
chaining utilizes a set of events and attempts to draw
conclusions from them, deduction going from the LHS
to the RHS of the rule, whereas backward chaining starts
from the goal or expectation of what is happening and
attempts to find a set of conditions that once satisfied
will support that goal, deduction going from the RHS of
a rule through the LHS.

VP-Expert. The tool that we utilize in this article, to
develop the KBS models, is that of VP-Expert. This par-
ticular shell uses backward chaining and divides a pro-
gram into three aspects: the action block, the rules block,
and the statements block. The action block controls the
inference process and determines the search criteria, the
riles block contains the knowledge base for the system,
and the statements block controls the systern—user inter-
action. An example program is given in Figure 1. The
declarative knowledge-based structure of VP-Expert is
advantageous for experimentation as it aids standardiza-
tion and consistency across models and their execution.

MORENO AND PLANT

Even though VP-Expert (Pigford & Baur, 1990) was the
language used in this experiment the approach used is
generic to any language in which the substantial number
of industrial KBS run {(e.g., CLIPS [NASA, 1991] or
OPS5 [Forgy, 1981]).

In order to examine the eifect that modifications to
the system had upon the Software Science Metrics, it
was necessary to comstruct a parser that automatically
determined the values of the metrics from the pro-
grammed KBS. This parser was written in Clipper.

Constraints

In this preliminary investigation, only KBSs written
in VP-Expert were examined with respect to Halstead’s
metrics, and the following metrics were computed: Total
usage of operators, Number of unique operators, Total
usage of operands, Number of unique operands, (Pro-
gram) Length, (Program) Vocabulary, (Program) Imple-
mentation length, Purity ratio, Volume, Estimated error,
Estimated level of abstraction, Effort, Cyclomatic com-
plexity, Extended cyclomatic complexity, Total number
of rules, Total number of premises. In order calculate
these metrics several language constraints had to be
identified and standardized. First, the aim of the experi-
ment is primarily to focus the metric count upon the
declarative aspects of the system and not consider the
procedural (Action Block) component, and thus the
serricolon operator could be ignored as the each of the
blocks including the action block terminates with a
semicolon. To overcome this missing operator in the
rules block the THEN operator was included in the
count, when normally only the IF operator would be
counted. Examining the syntax of the Rule statement:

RULE<rule_label>

IF

<conditionl> [AND/OR]

[condition?2 [AND/OR]]

[etc.]

THEN

<conclasionl> [CNF N]
. [conclusion2 [CNF N]]

[etc.]

[clausel...]

[clause2...]

[ELSE

<conclusion3> [CNF N}

[conclusiond [CNF Nij

[ete]

fclause 1]

fclause 2]

[etc.]]

IBECAUSE <text>]

We see that the operators need to be constrained in
order to clarify the experiment’s results. Hence, several
operators were not considered, such as BECAUSE,
CNF. These operators were not utilized in the test pro-
grams upon which the experiment was based; however, -
their absence does not unduly influence the outcome. If

HALSTEATYS METRICS REVISITED FOR KNOWLEDGE-BASED SYSTEMS 87

! Program Name: Haus_allKBS

tAction Block

ACTIONS

FIND Potential 'dentifies the REIS of the rule {event} to satisfy through LHSs
DISPLAY "The potential of the home is {Potential}~"; !Displays output

IRules Block

RULE 01

IF location=N_East
AND Num Floors=1
AND Num_Rooms=1
AND Num_Baths=1

THEN Potential =aa;

RULE 02

IF location=N_East
AND Num_Floors=1
AND Num_Rooms=1
AND Num_Baths =2

THEN Potential =ab;

RULE 256

IF location=N_West
AND Num Floors =4
AND Num_Rooms=4
AND Num_Baths =4

THEN Potential =jy;

1Statements Block

ASK location: "Whete is the location?";

1.HS Condition 1
ILHS Condition 2
LHS Condition 3
'LHS Condition 4
IRHS Action

I'LHS Condiiion 1
'LHS Condition 2
1LHS Condition 3
ILHS Condition 5
IRHS Action

ILHS Condition
ILIIS Condition
ILHS Condition
11 HS Condition
IRHS Action

CHOICES Num_Floors: 1,2,3,4;

CHOICES location: N_East, 3_East, 8_West, N_West,

ASK Num_Floors: "How many floors does the house have?";

Figure 1. Example rule-based program.

they are added later then their effect will only be to in-
crease the values of the metrics including that for the
Effort metric. The entities shown in Figure 2 were coun-
ted as single operators.

Results

The Effort equation, as derived by Halstead, is a
function composed of four independent variables and
this can be stated as E=f{N;, Np, n;, np). In our initial

_investigation of the effects of the independent variables

on the Effort, two knowledge bases were written

(House1.kbs and House2 kbs). These two were identical
in all respects with one major exception, the number
of unique operands, #,, in that Housel.kbs has 256 and
House2.kbs has 17. Table 1 gives a detailed accounting
of the each of the knowledge bases.

The knowledge-based system House2. KBS contained
256 rules (the 256 rules result from there being four
conditions in each rule, each condition having four pos-
sible values) and only four unigue conclusions. These
four conclusions were represented by four unique oper-
ands. (Halstead defines Operands as variables or con-
stants that the implementation employs and Operators as

= < » <> »>= =<IF THENELSEFIND CHAIN ASK AND OR

Figure 2. Operators.

88

Table 1. Software Science Metric Results

MORENGQ AND PLANT

Knowledge Base

Metrnic Housel.kbs House2 kbs

Total usage of operators (V) 2,565 2,563
Number of unique operators (7} 6 6
Total usage of operands (Ny) 2,565 2,565
Number of unique operands (.} 269 17
N (length) = N, + N, 5,130 5,130
n (vocab) = n, +n, 275 23
NA = * LOG; (n) +n * LOG; (ng) 2,186.733 .84.997
Purity ratio = NNN 0426 0.017
V (volume) = length * LOG; (vocab) 41,569.866 23,205.873
B~est. errors) = volume/EQ (B0 = 3,100) 13410 7.486
L (est. level of abstraction) = 2/n; * m/N, 0.035 0.002
E (effort) = volume/L* 1,189,145.436 10,504,070.086
Cyclomatic complexity = number of decision statements + 1 257 257
Extended cyclomatic complexity = sum of decisions, ANDs, Ors + 1 1,025 1,025
Total numner of rules 256 256
Total number of premises 1,024 1,024

symbols or combinations of symbols that affect the
value or ordering of Operands.) The operands in this
experiment are the values of the condition identifier
<condition:>, and the conclusion identifier <conclusion>,
as defined in the syntax of the VP-Expert rule structures
given above. In declarative languages these are fixed
identifiers, not variables as in procedural languages, and
hence the declarative lanouage requires a unigue identi-
fier for each unique item.’

As can be seen from Table 1, the Effort has a value
of about 10.5 million elementary mental discriminations.
This KBS was modified to have 256 unique conclusions
and renamed to Housel.KBS. These conclusions were
represented by 256 unique operands. As can be seen
from Table 1, the computed Effort now had a value of
about 1.2 million, whereas the cyclomatic values re-
mained constant. The fact that the cyclomatic values re-
mained constant was expected becanse this change in
operands did not change any of the independent vari-
ables in the complexity equations.

The fact that the metrics show that effort decreases
as the number of unique operands increase appeared to
be a significant weakness in Halstead’s metrics when
applied to a KBS created in a declarative language. In
order to examine this further it was decided to take the
partial derivative of Effort with respect to each of the
four independent variables. This was performed to show
the rate of change in E in relation to each of the vari-
ables.

Figure 3 displays the Effort equation and the partial
derivatives for each of the independent variables. Calcu-
lations were then made using values in the range of the
Housel KBS and Hous2.KBS.

The actual values of the Effort equations are pre-
sented in Table 2.

The effect of ecach metric on the Effort equation is

summarized in the following:

e As the number of unique operators increases the rate
of change of effort increases 11near1y

e As the number of unique operators increases the ef-
fort also increases linearly.

o Ag the total number of operands increases the Effort
also increases iimearly.

e As the total number of operands increases the rate of
change of effort also increases.

e As the total number of operators increases the rate
of change of effort remains constant.

e As the total number of operators increases the effort
increases linearly.

e Ags the number of unique operands increases the rate
of change of effort decrease assomtopically.

Ohservations on the Effort Metric

Metric N, is unusual in its effect on the Effort equa-
tion. It, and it alone, gives a constant partial derivative.
The actual value of the partial derivative will vary if
the initial values of the other three metrics are changed.
However, once initialized, the rate of change of Effort
due to a change in N, is constant.

The remaining three metrics, N, n;, and n,, share a
common effect on Effort. They all have their maximum
influences when their initial values are small and these
effects diminish as their values increase.

Both metrics N, and r, increase the effort in a nonuni-
form manner with metric N, increasing the effort at a
constant rate. This is in keeping with the general obser-
vations that increasing the quantity and usage of opera-
tors and operands increases the complexity of the algo-
rithm.

Upon reflection, the effect of metric n, is not surpris-

HALSTEAD'S METRICS REVISITED FOR KNOWLEDGE-BASED SYSTEMS 39

N, = Total operator usage
N, =Total operands usage
n; = Unique operator cout
1, = Unique operand count

E (effort) = KO*K1*K2
KO=N;+N,

K1=L0Gy(n, +x3)
K2 =(n, * N}/ 2%n,)

SE/6N, = K1¥K2

E = (KO*LOG(n +mp))*(my *N/2%ng)

SE/Sn, = (RO¥K2)/(n+ng)* LN(2) + (KO*LOG,(n +ny)y*Ny/(2%n,)
SE/Sn, = (KOYK2)/(n+n,) (LN(2)) - (KOFK2*LOG(ny*10)¥n;

SE/EN, = (KN *n,)/(2%ny) + (K1*N,Y*(ny/ng)

Figure 3. Effort equations.

Table 2. Effort Equation Results

Metric Value or Range

Graph N m N Mo
8Evs. N, 23502570 6 2565 269
EN,vs. N, 2350-2570 3] 2565 269
Evs. my 2565 4-119 2565 269
BEBM vs. ny 2565 4-119 2565 269
Evs. N, 2565 5 1700-1800 2565
SEIBN, vs. N, 2565 5 1700-1800 2565
Evs. 2656 5] 2565 14-269
6 2565 14-269

SEfdn, vs. n, 2656

ing. Halstead (1975) states, “Nonetheless, ambiguous
uses of operand names tend to reduce comprehensibility
of a program...” (p. 41). The use of unique operand
names tends to prevent or lessen multiple instantiations
and the effects of coupling.

CONCLUSIONS AND LESSONS LEARNED

This article has aimed at showing the difficulty of asso-
ciating metrics with KBSs. The example of the Effort
metric has shown us that it is possible to develop metrics
that can be used with KBSs. The results from the appli-
cation of the software science metrics are not promising;
the measures are not actively useful as the Effort values
produced indicated. What does an Effort metric of
1,189,145.436 elementary mental discriminations actu-
ally mean? If we were to go on and develop an estimated
value of the programming time by the equation:

T=E/S

~ where § is the Stroud number (Stroud, 1967) and which

is usually set to 18 (Conte et al., 1986), we get a value

equivalent to 764 days of work or 2.09 vears: an esti-
mate a little over 2 years longer than the system actually
took to write!

Hence, it is clear that the system developer and proj-
ect manager cannot use these metrics for assessing any
measurement of effort in relation to KBSs. The answer
may lie in more traditional directions such as a custo-
mized variation to COCOMO (Boehm, 1981), where
systems engineers have had experience in developing
historical databases of metrics for other complex soft-
ware systems such as real-time embedded systems. Fail-
ure o understand the applicability of a series of metrics
to an application development domain and their blind
use can and will lead to mistakes and systems failure.

REFERENCES

Adamov, R., & Baumann, P. (1987). Literature review on software
metrics. Institut fur Informatik, Der Universitat Zurich

Albrecht, A, 1., & Gaffney, J. E. (1983). Software function, source
lines of code. and development effort prediction: A software sci-
ence validation. JEEE Transactions of Software Engineering, SE-
96, 639-643.

Boehm, B. W. (1981). Sofiware engineering economics. Englewood
Cliffs, NJ: Prentice Hall.

20

Conte, S. D, Dunsmore, H. E, & Shen, V. Y. (1986). Sgftware engi-
neering metrics and models. Reading, MA: Benjamin Curnmings.

Davidow, W. H., & Malone, M. S. {1992). The virmal corporation.
New York: Harper Business Press.

DeSalvo, D. A., & Lisbowitz, J. (1990}, Managing artificial imtelii-
gence & expert systems. Yourdon Press Computing Series. Engle-
wood, NJ: Prentice Hall.

Fenton, N. E. {1991}. Sofrware merrics: A rigorous approach. London:
Chapman & Hall,

Forgy, C. L. (1981). The OPS5 user’s manual (Tech Rep., CMU-CS-
81-135). Computer Science Department, Camegie-Mellon Univer-

v sity, Pittsburgh, PA.

Garmus, D., & Herron, D. (1996). Measuring the software process.
Yourdon Press Computing Series. Upper Saddle River, NI: Pren-
tice Hall.

Grady, R. B., & Ceswell, D. L. (1987). Software merics: Establishing
a company wide program. Englewood Cliffs, NI: Prentice Hall.

Grady, R. (1992). Practical sofiware metrics and project management
and process improvement. Englewood Cliffs, NJ: Prentice Hall.

Halstead, M. H. (1975). Elements of software science, New York:
Elsevier North Holland.

Hamer, P. G., & Frewin, G. D. (1982). M. H. Halstead’s software
science-—a critical examination. Proceedings of the Gth Interna-
tional Conference on Software Engineering (pp. 197-208), Tokyo,
Japan.

Hamrison, W. A., Mauel K. L, Kluczny, R., & DeKock, A. (1982,
September). Applymg software complexity metrics to program
maintenance. IEEE Computer, 65-79.

Henry, S., & Kafura, D. (1981). Software structure melrics based on

mformanon flow. IEEE Transactions on Software Engineering,
SE-7(5), 510-518,

Kafura, D., & Reddy, G. R. (1987). The use of software complexity
metrics in software maintenance. IEEE Transactions on Software
Engineering, SE-13(3), 335-343.

King, M., & McAulay, L. (1995). A review of expert systems in man-
agement accountancy. The New Review of Applied Expert Systems,
I :

MORENO AND PLANT

Liebowitz, 1. (1991). Institutionalizing experr systems. Englewood
Cliffs, N: Prentice Hall. -

McCabe, T. 1. {1976). A complexity measure. JEEE Transactions on
Software Engineering, SE-2(4), 308-320,

NASA. (1991). CLIPS. The Software Technology Branch, Informatien
Technology Division, NASA/ISC.

O'Leary, D. E., Kukka, D., & Plant, R. T. (1997). Artificial intelli-
gence and virtual organizations. Communications of ACM, 40(1),
52-59.

Pigford, D. V., & Baur, G. (1990). Expert systems for business appli-
cations: Concepts and applications. Boston: Boyd & Frazer.

Pressman, R. 8. (1987). Software engineering: A practitioner’s ap-
proach. New York: McGraw-Hill

Quinn, B. (1992). Intelligent enterprise. New York: Free Press.

SAIC. {1995). Guidelines for the verification and validation of expert
system software and conventional software (EPRI TR-103331,
Project 3093-01, Final Report). McClean, VA: Author.

Schneidewind, N. F., & Hoffmann, H. (1979). An experiment in soft-
ware error data collection and analysis. IEEE Transactions on Soft-
ware Engineering, SE-3(3), 276-286.

Shen, V. Y., Conte, S. D., & Dunsmore, H. E. (1583). Software sci-
ence revisited: A critical anatysis of the theory and its empirical
support. IEEE Transactions on Software Engineering, SE-2),
155-165.

Sheppard, M. F. (1990). Design metrics: An empirical analysis. Soft-
ware Engineering Journal, 5(1), 3-10.

Stroud, J. M. (1967). The fine structure of psychelogical time. Annals
of New York Acadenty of Science, 138(2), 623631

Turbag, E., & Liebowitz, 1. (1992). Managing expert systems. Harris-
burg, PA: Ideas Group Publishing.

Zuse, H. (1991). Software complexity: Measures and methods (pp.
143-169). New York: Walter de Grayter,

Zolnowsks, J. C., & Simmons, D. B. (1981). Taking the measure of
program complexity. Proceedings of the National Compuier Con-
ference, 329-336.

